Helicobacter pylori UreE, a urease accessory protein: specific Ni(2+)- and Zn(2+)-binding properties and interaction with its cognate UreG.

نویسندگان

  • Matteo Bellucci
  • Barbara Zambelli
  • Francesco Musiani
  • Paola Turano
  • Stefano Ciurli
چکیده

The persistence of Helicobacter pylori in the hostile environment of the human stomach is ensured by the activity of urease. The essentiality of Ni(2+) for this enzyme demands proper intracellular trafficking of this metal ion. The metallo-chaperone UreE promotes Ni(2+) insertion into the apo-enzyme in the last step of urease maturation while facilitating concomitant GTP hydrolysis. The present study focuses on the metal-binding properties of HpUreE (Helicobacter pylori UreE) and its interaction with the related accessory protein HpUreG, a GTPase involved in the assembly of the urease active site. ITC (isothermal titration calorimetry) showed that HpUreE binds one equivalent of Ni(2+) (Kd=0.15 microM) or Zn(2+) (Kd=0.49 microM) per dimer, without modification of the protein oligomeric state, as indicated by light scattering. Different ligand environments for Zn(2+) and Ni(2+), which involve crucial histidine residues, were revealed by site-directed mutagenesis, suggesting a mechanism for discriminating metal-ion-specific binding. The formation of a HpUreE-HpUreG protein complex was revealed by NMR spectroscopy, and the thermodynamics of this interaction were established using ITC. A role for Zn(2+), and not for Ni(2+), in the stabilization of this complex was demonstrated using size-exclusion chromatography, light scattering, and ITC experiments. A calculated viable structure for the complex suggested the presence of a novel binding site for Zn(2+), actually detected using ITC and site-directed mutagenesis. The results are discussed in relation to available evidence of a UreE-UreG functional interaction in vivo. A possible role for Zn(2+) in the Ni(2+)-dependent urease system is envisaged.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helicobacter pylori hydrogenase accessory protein HypA and urease accessory protein UreG compete with each other for UreE recognition.

BACKGROUND The gastric pathogen Helicobacter pylori relies on nickel-containing urease and hydrogenase enzymes in order to colonize the host. Incorporation of Ni(2+) into urease is essential for the function of the enzyme and requires the action of several accessory proteins, including the hydrogenase accessory proteins HypA and HypB and the urease accessory proteins UreE, UreF, UreG and UreH. ...

متن کامل

Interactions among the seven Helicobacter pylori proteins encoded by the urease gene cluster.

Survival of Helicobacter pylori in acid depends on intrabacterial urease. This urease is a Ni(2+)-containing oligomeric heterodimer. Regulation of its activity and assembly is important for gastric habitation by this neutralophile. The gene complex encodes catalytic subunits (ureA/B), an acid-gated urea channel (ureI), and accessory assembly proteins (ureE-H). With the use of yeast two-hybrid a...

متن کامل

Dependence of Helicobacter pylori urease activity on the nickel-sequestering ability of the UreE accessory protein.

The Helicobacter pylori ureE gene product was previously shown to be required for urease expression, but its characteristics and role have not been determined. The UreE protein has now been overexpressed in Escherichia coli, purified, and characterized, and three altered versions were expressed to address a nickel-sequestering role of UreE. Purified UreE formed a dimer in solution and was capab...

متن کامل

Structure of UreG/UreF/UreH Complex Reveals How Urease Accessory Proteins Facilitate Maturation of Helicobacter pylori Urease

Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a com...

متن کامل

Mutational and Computational Evidence That a Nickel-Transfer Tunnel in UreD Is Used for Activation of Klebsiella aerogenes Urease.

Nickel-containing urease from Klebsiella aerogenes requires four accessory proteins for proper active site metalation. The metallochaperone UreE delivers nickel to UreG, a GTPase that forms a UreD/UreF/UreG complex, which binds to urease apoprotein via UreD. Prior in silico analysis of the homologous, structurally characterized UreH/UreF/UreG complex from Helicobacter pylori identified a water ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 422 1  شماره 

صفحات  -

تاریخ انتشار 2009